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ABSTRACT 

Four classical geomechanics problems involving semi-infinite linear elastic media have 
been solved numerically using recently developed mapped infinite elements coupled to fi- 
nite elements. The effect of the remoteness of the truncated boundary and the location 
of infinite element coupling on solution accuracy has been studied. The results of con- 
ventional analyses using finite elements over a relatively large but restricted region are 
compared to the coupled analyses. Comparison of the results shows that  for the same 
number of degrees of freedom the performance of the coupled solutions is superior to the 
conventional approach with respect to accuracy of solution and computational efficiency. 
Finally, some general guidelines are proposed for the efficient numerical solution of these 
types of problems using the coupled finite/infinite element approach. 

INTRODUCTION 

In the modelling of many geomechanics problems involving soil-structure interaction, 

the soil is represented as a region of semi-infinite extent. When these problems are for- 

mulated through analytical schemes, the modelling of the semi-infinite nature of the soil 

region is preserved explicitly as part  of the solution procedure. When considering the 

numerical modelling of such problems using finite element techniques, the traditional ap- 

proach to achieve the effect of unboundness is to incorporate a large number of elements 

extending significant distances beyond the range of the loaded region. However, the use 

of such large finite element discretizations, may result in a large amount of computational 

effort. Also, the location of the truncated boundary is indeterminate, and an arbitrary 

location may lead to erroneous results. In practice, a compromise is often made between 

solution accuracy and computational effort. Nevertheless, the level of discretization and 
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the location of the truncated boundary selected is often based on trial and error before an 

acceptable degree of accuracy is achieved. 

Many techniques have been proposed in the past for the numerical modelling of un- 

bounded media [1-7]. They range from semi-analytical methods (in which infinite elements 

are constructed on the basis of far field solutions) to exponential decay methods which 

ensure the decay of variables at large distances. Exponential decay methods have the dis- 

advantage that their implementation is problem dependent and they require specialized 

numerical integration [11. 

Recently some of the above problems have been overcome by the introduction of 

mapped infinite elements. There are basically two methods of formulating these elements. 

One method is the direct approach, or the displacement descent method, in which the 

natural coordinate domain is extended to infinity in the required direction while keeping 

the standard mapping functions well-defined. The unknown variables are expressed in 

terms of descent shape functions which decay asymptotically to zero towards infinity [1,2]. 

The second approach is the inverse method, or the coordinate ascent method, in which 

the domain of the natural plane (e.g. - 1  < ~ ~ +1) is maintained as usual [3,4,5,6,7]. 

Ascent mapping functions are employed for geometries that are singular at an extreme 

of the natural plane (e.g. ~ = ÷1) causing the physical coordinate to exhibit singular 

behaviour when the natural coordinate approaches that extreme. The physical coordinate 

value at the extreme of natural plane (e.g. ~ = +1) approaches infinity and hence the 

element represents an unbounded medium. Conventional shape functions are employed for 

interpolating nodal variables. Of these two approaches, the latter is preferred as it uses the 

conventional Gauss-Legendre numerical integration for element formulations. This feature 

facilitates their implementation in general purpose finite element programs without major 

modifications. 

MAPPED INFINITE ELEMENT 

The concept of the coordinate ascent mapped infinite element has been explained in 

detail in other publications [e.g. 3,4,5,6,7]. Hence the discussion in this section is restricted 

to the basic derivation of mapping and shape functions of this element. 

Mapped infinite elements can be constructed to represent various orders of decay rate 

for the field variables. Of all the decay rates reported in the literature, the 1/r type 

seems to yield the most accurate results [e.g. 5,6,7] and has been adopted in the current 

investigation. Figure 1 shows a five-noded infinite element which represents an infinite 

medium in the local coordinate direction ~. Mapping functions for the element nodes can 

be constructed separately in the two local directions ~ and ~ and the global functions 
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obtained as their product according to: 

M~ =/~(~)M~C,) (1) 

The mapping function in local direction ~ is constructed with the singularity at the ~ -- +1 

face (i.e. infinite distance). For example, local direction mapping functions for nodes 1 

and 5 can be obtained as follows: 

- 2~  (2) 
M,(~) -- (1 - ~) 

i x ( t / )  = 7(1 + ~7) (3) 
2 

Ms(~) - (1 + e) (4) 
(i - ~) 

M5(~7) - (1 + ~7) (5) 
2 

Interpolation for the field variables of infinite elements is normally carried out in terms 

of nodal variables at the finitely located nodes assuming that the variables vanish to zero 

at infinite distance. By invoking this assumption, the infinite element shown in Figure 1 

can be considered as an analogue of an 8-noded quadrilateral element whose field variables 

on the three nodes at the ~ = %1 face are zero. The shape functions for the infinite element 

nodes are then obtained directly from the corresponding nodes of an 8-noded isoparametric 

quadrilateral element. Table 1 gives a complete listing of mapping and shape functions. 

Both functions satisfy completeness and monotonic convergence requirements and 

hence the mapping is independent of the choice of coordinate system and the interpolation 

yields unique values. It was found that a lower order of integration for the infinite elements 

than that of finite elements in assemblage yields better results [7]. Hence an integration 

order of 2 x 2 and 3 x 3 has been used for infinite and finite elements respectively to 

formulate various element matrices in the numerical analyses to follow. 

NUMERICAL ANALYSIS AND RESULTS 

Four classical geomechanics problems are selected and their numerical solutions deter- 

mined using conventional finite element methods and coupled methods that employ a region 

of finite elements surrounded by a semi-infinite domain modelled by infinite elements. 

In the conventional analyses the distance to the truncated boundary is varied whereas 

in the coupled analyses the distance to the coupling location is varied. In each analysis a 

remoteness factor/3, has been defined in terms of distance to the boundary and a character- 

istic length of the structure under consideration. In both methods of analysis, the number 

of elements and consequently the number of nodal points has been increased for higher 
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FIGURE 1. Two-dimensional mapped infinite element 
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TABLE 1 

Mapping and Shape Functions for 2-Dimensional Mapped Infinite Element 

Node 

1 

M a p p i n g  F u n c t i o n s  S h a p e  F u n c t i o n s  

, , , ,  = 

NI --- ~(1 - ~){1 + ~}) 
- 1(1 - ~2)(1 +W) 
- I(1 - ~)(1 - T} 2) 

N2 = 1(1 -- ~c)(1 -- )/) 
- -  I(1 - -  ~)(1 - )/2) 

- -  ¼ ( 1  - -  ~c2)(1 - -  )7) 

M ,  = - ,?) 

M5 = ~ (1~2))) 

N3 --- -(-~-)-(1 -- ,~) 

N4 = (1 - ,~2).~ 

Ns  = (I  - ~2) 

values of/3. Aspect ratios of individual elements for meshes in both methods are made 

approximately equal so that they would have the same errors due to mesh discretization. 

When the boundary is truncated, nodal points on the boundary can be subjected to 

different boundary conditions (e.g. they can be fixed or permitted to move in the tangential 

direction to the boundary). It was observed that both boundary conditions yield the same 

results if the boundary is located at a reasonable distance. Consequently, all the nodes 

on truncated boundaries are fixed in the current study. In the coupled method, there 

is no truncated boundary and hence the nodes corresponding to infinite elements are left 

free. Conventional and coupled numerical solutions have been compared with the analytical 

solutions assuming linear elastic conditions in order to examine numerical solution accuracy 

and convergence as a function of boundary location. The soil is taken as a linear elastic, 

homogeneous, isotropic medium with Poisson's ratio of 0.2. 

Flexible Circular FootinK 

This section considers the problem of the settlement and stress distribution below a 

flexible circular footing resting on the surface of a semi-infinite medium. 
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Typical finite element meshes are shown in Figure 2. The remoteness factor /3 is 

defined in terms of the radius of footing a and has been varied between tests (Table 2). In 

Table 2, NUMEL refers to the number of elements in the mesh and N D O F  refers to the 

number of equations. The accuracy of the conventional and coupled numerical solutions 

can be expressed as a percentage of the set t lement  at the footing centre determined from 

analytical solutions [e.g. 8] as shown in Figure 3. 

TABLE 2 

Flexible Circular Footing Analyses 

Remoteness factor, 13 N U M E L / N D O F  

Conventional Methods 
2 
5 
10 
20 
40 

Coupled Methods 
1.5 
2 
3 
5 

25/150 
25/150 
49/294 
49/294 
81/490 

24/138 
24/138 
24/138 
48/278 

Figure 3 shows that  when the infinite elements are located at a distance of 1.5 times the 

radius or greater, the percentage error in central displacement is less than 2%. However, in 

the conventional methods,  the mesh has to be extended to about  20 times the footing radius 

to obtain solutions with less than 5% error. Significant errors in the conventional finite 

element analyses were observed for remoteness factors less than (say) 10. Figure 4 shows 

typical surface set t lement profiles from analytical and numerical methods and illustrates 

that  the coupled solution for/3 -- 2 is more accurate than the conventional solution with 

/3 -- 10. Table 2 shows that  the coupled method with/3  -- 2 uses 138 N D O F  which is less 

than one half of the 294 NDOF used in the conventional analysis wi th /3  -- 10. Since the 

computat ional  effort is proportional  to the square of NDOF the coupled method  is about  

4 times more efficient than the conventional method while achieving greater accuracy. 

The results of numerical analyses for the same cases illustrated in Figure 4 showed 

that  the predicted stress distributions are in close agreement with the analytical solutions. 

This observation can be anticipated based on the geometrical similarity between set t lement  

profiles shown in Figure 4. 
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Flexible Strip Footing 

This section considers the problem of the settlement and stress distribution below a 

flexible strip footing resting on a semi-infinite medium. The same FEM meshes used for 

the circular footing case shown in Figure 2 are used in this section. The remoteness factor 

/3 has been defined in terms of the footing half-width B. Analytical solutions for this ease 

can be found in many text books [e.g. 9]. The surface settlement in analytical solutions is 

expressed as a function of an indeterminate parameter d, which is the distance to a plane 

parallel to the surface whose vertical displacement is zero. Parameter d is usually taken as 

a large but finite value. As its value is unknown, predicted FEM values cannot be verified 

by any direct approach. However, an indication of the extent of infinite media that each 

FEM mesh represents can be obtained by back-calculating a d value which gives the same 

analytical displacement profile as that predicted by FEM methods. 

TABLE 3 

Flexible Strip Footing Analyses 

Remoteness Factor,/3 NUMEL/NDOF Predicted d/B ratio 

Conventional Methods 
10 
2O 
40 

Coupled Methods 
2 
5 
10 

49/294 
49/294 
81/490 

24/138 
48/278 
48/278 

12 
23 
44 

41 
103 
205 

Figure 5 shows typical normalized surface settlement profiles predicted by the numer- 

ical and analytical methods. Figure 5 and Table 3 show that the conventional methods 

can only model a domain corresponding to the mesh dimensions (i.e. d/B ~ 8). In con- 

trast, the coupled analyses are capable of modelling a region that extends well beyond the 

coupling boundary (i.e. d/B >>/3).  

Figure 6 shows the normalized stress distribution below the edge of a strip footing. The 

stresses for the coupled method were obtained with/3 -- 2 and those for the conventional 

method using /3 = 10. The results indicate that the distribution of az is sensitive to 

the numerical method and the value of/3 adopted. In addition, it was observed during 
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the investigation that placement of the coupled boundary close to the footing does not 

introduce significant errors in predicted stress distributions. 

Single Circular Pile 

This section considers the problem of the settlement of an axially loaded circular pile 

which is perfectly bonded to the soil. Poulos and Davis [10,11] have reported extensive 

numerical solutions for the behaviour of piles of different slenderness ratios placed in media 

with a range of elastic properties. Their solutions are derived from finite difference analysis 

in conjunction with Mindlin's solution for displacements due to concentrated loads. 

Numerical studies have been carried out with different values of ~. The remoteness 

factor has been defined in terms of the length of pile l as shown in Figure 7. Table 4 

summarizes the mesh configurations investigated. It was observed that for very short piles, 

the solutions approach that of a circular footing. For very long piles both conventional 

and coupled numerical solutions converge since most of the load is transferred to the soil 

within the pile length. 

TABLE 4 

Circular Pile Analyses 

Remoteness factor, fl NUMEL/NDOF 

Conventional Methods 
5 
10 
20 

Coupled Methods 
0.5 
1 
5 

81/504 
100/598 
144/860 

48/296 
63/384 
99/596 

Figure 8 shows the variation in percentage error with fl for intermediate slenderness 

ratios 5 and 25. For these slenderness ratios, coupled methods converge to less than 1~ 

error at a fl value of 5 whereas the conventional methods require a value in excess of fl = 20 

to achieve the same degree of accuracy. 
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Tunnel Excavated in a Prestressed Medium 

When a tunnel is excavated in a prestressed elastic medium, radial and normal stresses 

are relieved which results in deformations around the tunnel periphery. Pender [12] has 

reported analytical solutions for the displacements caused by stress relief. Maximum ra- 

dial displacement, Umaz occurs at the crown (i.e. 0 = +90 °) and the minimum radial 

displacement, U, n i ,  occurs along the horizontal axis (i.e. 0 = 0°). Using Poisson's ratio, 

v --- 0.2 and lateral pressure coefficient Ko -- a//(1 - v) -- 0.25, the displacements at these 

two locations simplify to: 

O" v 
u,..~ = 1 . 7 4 3 .  (6) 

ou 
U, ni,~ = -0.24-~-a (7) 

Typical finite element meshes for numerical analyses are shown in Figure 9. The 

remoteness factor ]3 has been defined in terms of the radius of tunnel a. Relieved stresses 

are calculated at various 0 values corresponding to the nodal point locations and they are 

applied as a non-uniform pressure loading on the tunnel periphery. Table 5 summarizes 

the various cases analyzed. 

TABLE 5 

Tunnel Analyses 

Remoteness factor, ]3 NUMEL/NDOF 

Conventional Methods 
2 
3 
4 
5 
10 
20 
40 

Coupled Methods 
1 

1.5 
2 

9/64 
15/102 
15/io2 
15/2o2 
18/120 
18/120 
21/138 

3/18 
9/54 
12/72 

Figures 10 and 11 show the variation of percentage error in maximum and minimum 

displacements with remoteness factor/3. It can be seen that the coupled methods converge 
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to the analytical values rapidly (i.e. less than 0.5% at fl - 2) whereas the conventional 

methods show errors of about 2 to 6 ~  for a large number of elements with the mesh 

boundary located at 40 times the radius. Figure 12 shows the analytical and predicted 

incremental radial stresses along the 0 -- 0 radial line. Stresses for the coupled methods 

were obtained by placing infinite elements at 1.5 times the radius and the boundary for 

conventional analysis at 5 times the radius. Both methods predict stress distributions 

reasonably well. 

CONCLUSIONS 

Numerical solutions representing four classical geomechanics problems have been ob- 

tained using conventional finite elements and finite elements coupled to infinite elements to 

represent a semi-infinite elastic medium. Solutions obtained by both methods were com- 

pared with analytical values and the errors due to the proximity of the truncated boundary 

in conventional methods compared to the errors due to proximity of the coupled boundary 

using infinite elements. It was observed that  the location of the truncated boundary can 

introduce significant errors in predicted settlements and stresses using conventional finite 

element methods even when the truncated boundary is located at more than 10 times 

the characteristic length of the structure. In contrast, numerical solutions using coupled 

methods were seen to converge to analytical solutions very rapidly with respect to number 

of elements while requiring significantly fewer degrees of freedom. The results of this study 

show that  a high degree of accuracy can be obtained using infinite elements coupled with 

finite elements at a distance of twice the radius or half-width of footings or tunnels and 

about 5 times the pile length for piles with intermediate slenderness ratio values. 

Combination of 1/r  type mapped infinite elements with a lower order of integration 

than that  for regular finite elements in the assemblage is recommended for best efficiency. 

The computational accuracy and efficiency of coupled methods for the solution of 

plasticity problems in geomechanics is currently under study by the authors. 
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